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Agriculture already covers around 40% of Earth’s ice- and 
desert-free land and is responsible for around two-thirds 
of freshwater withdrawals1. Its immense scale means that it 

is already the largest source of threat to other species2, so how we 
cope with very marked increases in demand for farm products3,4 will 
have profound consequences for the future of global biodiversity2,5. 
On the demand side, cutting food waste and excessive consumption 
of animal products is essential1,5–8. In terms of supply, farming at 
high yields (production per unit area) has considerable potential to 
restrict humanity’s impacts on biodiversity. Detailed field data from 
five continents and almost 1,800 species from birds to daisies9–14 
reveal that so many depend on native vegetation that for most the 
impacts of agriculture on their populations would be best limited by 
farming at high yields (production per unit area) alongside sparing 
large tracts of intact habitat. Provided it can be coupled with set-
ting aside (or restoring) natural habitats15, lowering the land cost of 
agriculture thus appears central to addressing the extinction crisis2.

However, a key counterargument against this land-spar-
ing approach is that there are many other environmental 
costs of agriculture besides the biodiversity displaced by the 
land it requires, such as greenhouse gas (GHG) and ammonia  
emissions, soil erosion, eutrophication, dispersal of harmful 
pesticides and freshwater depletion5,7,16–18. Measured per unit 
area of farmland, the production of such externalities is some-
times greater in high- than lower-yield farming systems17,18,  
potentially weakening the case for land sparing. However, while 
expressing externalities per unit area can help identify local-scale 
impacts19, it systematically underestimates the overall impact 
of lower-yield systems that occupy more land for the same  
level of production20. To be robust, assessments of externali-
ties also need to include the off-site effects of management  
practices, such as crop production for supplementary  
feeding of livestock, or off-farm grazing for manure inputs to 
organic systems20–22.

The environmental costs and benefits of high-
yield farming
Andrew Balmford1*, Tatsuya Amano   1,2, Harriet Bartlett   1, Dave Chadwick3, Adrian Collins4, 
David Edwards5, Rob Field6, Philip Garnsworthy   7, Rhys Green1, Pete Smith8, Helen Waters   1,  
Andrew Whitmore   9, Donald M. Broom10, Julian Chara11, Tom Finch1,6, Emma Garnett   1, 
Alfred Gathorne-Hardy12,13,14, Juan Hernandez-Medrano15, Mario Herrero   16, Fangyuan Hua1, 
Agnieszka Latawiec17,18, Tom Misselbrook4, Ben  Phalan   1,19, Benno I. Simmons   1, Taro Takahashi4,20, 
James Vause21, Erasmus zu Ermgassen1 and Rowan Eisner1

How we manage farming and food systems to meet rising demand is pivotal to the future of biodiversity. Extensive field data 
suggest that impacts on wild populations would be greatly reduced through boosting yields on existing farmland so as to spare 
remaining natural habitats. High-yield farming raises other concerns because expressed per unit area it can generate high 
levels of externalities such as greenhouse gas emissions and nutrient losses. However, such metrics underestimate the overall 
impacts of lower-yield systems. Here we develop a framework that instead compares externality and land costs per unit produc-
tion. We apply this framework to diverse data sets that describe the externalities of four major farm sectors and reveal that, 
rather than involving trade-offs, the externality and land costs of alternative production systems can covary positively: per unit 
production, land-efficient systems often produce lower externalities. For greenhouse gas emissions, these associations become 
more strongly positive once forgone sequestration is included. Our conclusions are limited: remarkably few studies report 
externalities alongside yields; many important externalities and farming systems are inadequately measured; and realizing the 
environmental benefits of high-yield systems typically requires additional measures to limit farmland expansion. Nevertheless, 
our results suggest that trade-offs among key cost metrics are not as ubiquitous as sometimes perceived.
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A novel framework for comparing system-wide costs
Here, we argue that comparisons of the overall impacts of contrast-
ing agricultural systems should focus on the sum of externality gen-
erated per unit of production10 (paralleling measures of emissions 
intensity in climate change analyses). This approach has, for the 
most part, been adopted only for a relatively narrow set of agricul-
tural products8,23 and farming systems (for example, organic versus 
conventional, glasshouse versus open-field20,24). Here we develop a 
more general framework, and apply it to a diversity of data on some 
major farm sectors, farming systems and environmental externali-
ties. Existing data are limited but nevertheless enable us to explore 
the utility of this new approach, test for broad patterns and make an 
informed commentary on their significance for understanding the 
trade-offs and co-benefits of high- versus lower-yield systems.

Our framework involves plotting the environmental costs of pro-
ducing a given quantity of a commodity against one another, across 
alternative production systems (as in Fig. 1). We focus on examining 
variation in some better-known externality costs in relation to land 
cost (that is, 1/yield), because of the latter’s fundamental importance 
as a proxy for impacts on biodiversity. However, the approach could 
be used to explore associations among any other costs for which 
data are available. Comparisons must be made across production 
systems that could, in principle, be substituted for one another, so 
they must be measured or modelled identically and in the same 
place or, if not, potential confounding effects of different meth-
ods, climate and soils must be removed statistically. If the idea that 
high-yield systems impose disproportionate externalities is true, we 
would expect plots of externality per unit production against land 
cost to show negative associations (Fig. 1a, blue symbols). However 
observed patterns may be more complex, and could reveal promis-
ing systems associated with low land cost and low externalities, or 
unpromising systems with high land and externality costs (Fig. 1b, 
green and red symbols, respectively).

Our team of sector and externality specialists collated data for 
applying this framework to five major externalities (GHG emis-
sions, water use, nitrogen (N), phosphorus (P) and soil losses) 
in four major sectors (Asian paddy rice, European wheat, Latin 
American beef and European dairy; Methods). We used both lit-
erature searches and consultation with experts to find paired yield 
and externality measurements for contrasting production systems 
in each sector. To be included, data had to be near-complete for 
a given externality—for example, most major elements of GHG 
emissions or N losses had to be included, and if systems involved 
inputs (such as feeds or fertilizers) generated off-site we required 

data on the externality and land costs of their production. To limit 
confounding effects, we narrowed our geographic scope within 
each sector (Supplementary Table 1), so that differences across sys-
tems could reasonably be attributed to farm practices rather than 
gross bioclimatic variation. Where co-products were generated, we 
apportioned overall costs among products using economic alloca-
tion, but also investigated alternative allocation rules.

Findings for four sectors
Our first key result is that useable data are surprisingly scarce. Few 
studies measured paired externality and yield information, many 
reported externalities in substantially incomplete or irreconcilably 
divergent ways, and we could find no suitable data at all on some 
widely adopted practices. Nevertheless, we were able to obtain suf-
ficient data to consider how externalities vary with land costs for 9 
out of 20 possible sector–externality combinations (Supplementary 
Table 1). The type of data available differed across these combina-
tions (which we view as a useful test of the flexibility of our frame-
work). For one combination, the most extensive data we could find 
was from a long-term experiment at a single location. However 
because we were interested in generalities, where possible we used 
information from multiple studies—either field experiments or life 
cycle assessments (LCAs) conducted across several sites—and used 
generalized linear mixed models (GLMMs) to correct for confound-
ing method and site effects (Methods). Last, for two sectors, we used 
process-based models parameterized for a fixed set of conditions 
representative of the region.

The data that we were able to obtain do not suggest that envi-
ronmental costs are generally larger for farming systems with low 
land costs (that is, high-yield systems; Fig. 2). If anything, posi-
tive associations—in which high-yield, land-efficient systems also 
have lower costs in other dimensions—appear more common. For 
Chinese paddy rice, we found sufficient multi-site experimental 
data to explore how two focal externalities vary with land cost across 
contrasting systems (Methods). GHG costs (Fig. 2a) showed nega-
tive associations with land cost across monoculture and rotational 
systems (assessed separately). Our GLMMs revealed that for both 
system types, greater application of organic N lowered land cost but 
increased emissions (probably because of feedstock effects on the 
methanogenic community25; Supplementary Table 2); by contrast, 
there was little or no GHG penalty from boosting yield using inor-
ganic N (arrows, Fig. 2a). A large volume of data on rice and water 
use showed weakly positive covariation in costs (Fig. 2b). GLMMs 
indicated that increasing application of inorganic N boosted 
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Fig. 1 | Framework for exploring how different environmental costs compare across alternative production systems. a, A hypothetical plot of externality 
cost versus land cost of different, potentially interchangeable production systems (blue circles) in a given farming sector. In this example, the data suggest 
a trade-off between externality and land costs across different systems. b, This example reveals a more complex pattern, with additional systems (in green 
and red circles) that are low or high in both costs.
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Fig. 2 | Externality costs of alternative production systems against land cost for five externalities in four agricultural sectors. All costs are expressed per 
tonne of production (so land cost, for instance, is in ha-years per tonne; that is, the inverse of yield). a–j, Costs differentiated by sector (shown by icons). 
a,b, Asian paddy rice. c,d, European wheat. e,f, Latin American beef. g–j, European dairy. Different externalities are indicated by background shading 
(grey, GHG emissions; blue, water use; pink, N emissions; purple, P emissions; buff, soil loss), and different sectors (Asian paddy rice, European wheat, 
Latin American beef and European dairy) are shown by icons. Points on plots derived from multi-site experiments (a–c) and LCAs (e) show values for 
systems adjusted for site and study effects via GLMMs of land cost and externality cost (for 95% confidence intervals, see Supplementary Fig. 1), while 
arrows show management practices with statistically significant effects (whose 95% confidence intervals do not overlap zero in the GLMMs; Methods). 
In d (wheat and N emissions), progressively darker circles depict increasing nitrate application rate (0, 48, 96, 144, 192, 240 and 288 kg N per ha-year). 
In f (beef and GHG emissions, estimated by RUMINANT), different colours show different system types. In g–j (dairy and four externalities), circles and 
squares show results for conventional and organic systems, respectively (detailed in Supplementary Table 4). Spearman’s rank correlation coefficients  
(P values) are a, rice–rice: −​0.51 (0.002); rice–cereal, −​0.36 (0.06); b, 0.19 (0.26); c, −​0.34 (0.14); d, −​0.21 (0.66); e, 0.95 (0.001); f, 0.83 (<​0.001);  
g, 0.90 (0.08); h, 0.70 (0.23); i, 1.00 (0.02); and j, 1.00 (0.02). Note that these correlation coefficients do not necessarily reflect nonlinear relationships 
(for example, d) accurately. Credit: Icons for Asian paddy rice and European wheat: Freepik (www.flaticon.com). 
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yield26, and less irrigation lowered water use while incurring only 
a modest yield penalty27 (Supplementary Table 2). Sensitivity tests 
of the rice analyses had little impact on these patterns (Methods; 
Supplementary Fig. 2).

We found two useable data sets on European wheat, both from 
the UK (Methods). Our GLMMs of data from a three-site experi-
ment varying the N fertilization regime revealed a complex relation-
ship between GHG and land costs (Fig. 2c; Supplementary Table 2),  
driven by divergent responses28 to adding ammonium nitrate 
(which lowers land costs but increases embodied GHG emissions) 
and adding urea (which lowers land costs without increasing GHG 
emissions per unit production, but at the cost of increased ammonia 
volatilization). A single-site experiment varying inorganic N treat-
ments showed a nonlinear relationship between land cost and N 
losses (Fig. 2d), with increasing N application lowering both costs 
until an apparent threshold, beyond which land cost decreased fur-
ther but at the cost of greater N leaching (see also ref. 1).

In livestock systems, all data we could find showed posi-
tive covariation between land costs and externalities. For Latin 
American beef, we located coupled yield estimates only for GHG 
emissions, but here two different types of data (Methods) revealed 
a common pattern. Using GLMMs again to control for potentially 
confounding study and site effects, we found that across multiple 
LCAs, pasture systems with greater land demands also generated 
greater emissions (Fig. 2e), with both land and GHG costs reduced 
by pasture improvements (using N fertilization or legumes). This 
pattern across contrasting pasture systems was confirmed by run-
ning RUMINANT29 (Fig. 2f), a process-based model that also iden-
tified relatively low land and GHG costs for a series of silvopasture 
and feedlot-finishing systems (for which comparable LCA data 
were unavailable).

For European dairy, process-based modelling of three conven-
tional and two organic systems, parameterized for the UK, enabled 
us to estimate four different externalities alongside yield (Methods). 
This showed that conventional systems—especially those using less 
grazing and more concentrates—had substantially lower land and 
also GHG costs (Fig. 2g), in part because concentrates reduce CH4 
emissions from fibre digestion30. Systems with greater use of concen-
trates (which have less rumen-degradable protein than grass31) also 
showed lower losses of N, P and soil per unit production (Fig. 2h–j).  
These broad patterns persisted when we used protein produc-
tion rather than economic value to allocate costs to co-products 
(Methods; Supplementary Fig. 2).

Incorporating land use
As a final analysis, we examined the additional externalities result-
ing from the different land requirements of contrasting systems. To 
generate the same quantity of agricultural product, low-yield systems 
require more land, allowing less to be retained or restored as natural 
habitat. This is in turn likely to increase GHG emissions and soil 
loss, and alter hydrology—although we could find only enough data 
to explore the first of these effects. For each sector, we supplemented 
our direct GHG figures for each system with estimates of GHG con-
sequences of their land use following Intergovernmental Panel on 
Climate Change (IPCC) methods32 to calculate the sequestration 
potential of a hectare not used for farming and instead allowed to 
revert to climax vegetation (Methods). Results (Fig. 3) showed that 
these GHG opportunity costs of agriculture were typically greater 
than the emissions from farming activities themselves and, when 
added to them, in every sector generated strongly positive across-
system associations between overall GHG cost and land cost. These 
patterns were maintained in sensitivity tests where we halved recov-
ery rates or assumed half of the area potentially freed from farming 
was retained under agriculture (Methods; Supplementary Fig. 3). 
These findings thus confirm recent suggestions33,34 that high-yield 
farming has the potential, provided land not needed for production 

is largely used for carbon sequestration, to make a substantial con-
tribution to mitigating climate change.

Conclusions, caveats and knowledge gaps
This study was conceived as an exploration of whether high-yield 
systems—central to the idea of sparing land for nature in the face 
of enormous human demand for farm products—typically impose 
greater negative externalities than alternative approaches. Our 
results support three conclusions. First, useful data are worryingly 
limited. We considered only four relatively well-studied sectors 
and a narrow set of externalities—not including important impacts 
such as soil health or the effects of pesticide exposure on human 
health20. Even then, we found studies reporting yield-linked esti-
mates of externalities scarce, with many widely adopted or prom-
ising practices within these sectors undocumented. We were not 
able to examine complex agricultural systems (such as mixed farm-
ing or agroforestry) that might have relatively low externalities. 
Relevant data on many significant developing-world farm sectors 
(such as cassava or dryland cereal production in Africa) also appear 
very limited. Given that a multi-dimensional understanding of the 
environmental effects of alternative production systems is integral 
to delivering sustainable intensification, more field measurements 
linking yield with a broader suite of externalities across a much 
wider range of practices and sectors are urgently needed.

Second, the available data on the sector–externality combina-
tions that we considered do not suggest that negative associations 
between land cost and other environmental costs of farming are 
typical (in contrast to Fig. 1a). Many low-yield systems impose high 
costs in other ways too and, although certain yield-improving prac-
tices have undesirable impacts (for example, organic fertilization of 
paddy rice increasing CH4 emissions; see also ref. 1), other practices 
appear capable of reducing several costs simultaneously (see also 
refs 1,8,24,35,36). High (but not excessive) application of inorganic N, 
for example, can lower land take of Chinese rice production without 
incurring GHG or water-use penalties. Similarly, in Brazilian beef 
production, adopting better pasture management, semi-intensive 
silvopasture and feedlot-finishing can all boost yields alongside 
lowering GHG emissions. It is worth noting that although most sys-
tems we examined are relatively high-yielding, other recent work 
suggests that positive associations (rather than trade-offs) among 
environmental and land costs may, if anything, be more likely in 
lower-yielding systems1.

Third, pursuing promising high-yield systems is clearly not 
the same as encouraging business-as-usual industrial agriculture. 
Some high-yield practices we did not examine, such as the heavy 
use of pesticides in much tropical fruit cultivation37, are likely to 
increase externality costs per unit production. Of the high-yield 
practices we did investigate some, such as applying fossil-fuel-
derived ammonium nitrate to UK wheat, impose disproportion-
ately high environmental costs. Others that seem favourable in 
terms of our focal externalities incur other costs, such as high NH3 
emissions from using urea on wheat28, and management regimes 
that reduce costs in one geographic setting may not do so in oth-
ers1. Much work characterizing existing systems and designing new 
ones is thus needed. We suggest that our framework can serve as 
a device for identifying existing yield-enhancing systems that also 
lower other environmental costs—and perhaps more importantly, 
for benchmarking the environmental performance of promising 
new technologies and practices.

We close by stressing that for high-yield systems to generate 
any environmental benefits they must be coupled with efforts to 
reduce rebound effects. Several plausible mechanisms for limiting 
these by explicitly linking yield growth to improved environmen-
tal performance have been identified—including strict land-use 
zoning; strategic deployment of yield-enhancing loans, expertise 
or infrastructure; conditional access to markets; and restructured 
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rural subsidies15. Without such linkages, systems that perform well 
per unit production may nevertheless cause net environmental 
harm through higher profits or lower prices stimulating land con-
version38–40, and damage human health by encouraging overcon-
sumption of cheap, calorie-rich but nutrient-deficient foods41,42,. If 
promising high-yield strategies are to help solve rather than exac-
erbate society’s challenges, yield increases instead need to be com-
bined with far-reaching demand-side interventions1,6,41 and directly 
linked with effective measures to constrain agricultural expansion15.

Methods
Focal sectors and externalities. We focused on 4 globally significant farm sectors 
(Asian paddy rice, European wheat, Latin American beef and European dairy, 
accounting for 90%, 33%, 23% and 53% of global output of these products43) 
and 5 major externalities (GHG emissions, water use, N, P and soil losses). 
We chose these sector–externality combinations because preliminary work 
suggested that they were characterized quantitatively relatively often, using 
diverse approaches (single-site experiments, multi-site experiments, LCAs and 
process-based models), enabling us to explore the generality of our framework. 
We then searched the literature and consulted experts to obtain paired yield and 
externality estimates of alternative production systems in each sector, narrowing 
our geographic scope so that differences in system performance could be 
reasonably attributed to management practices (rather than gross variation in 
bioclimate or soils). Our analyses have rarely been attempted previously and have 
complex data requirements, so we could not adopt standard procedures developed 
for systematic reviews on topics where many studies have attempted to answer the 
same research question.

This process generated data on ≥​5 contrasting production systems for 9 out 
of 20 possible sector–externality combinations (Supplementary Table 1): Chinese 
rice–GHG emissions (from multi-site experiments); Chinese rice–water use 

(multi-site experiments); UK wheat–GHG emissions (a multi-site experiment); 
UK wheat–N emissions (a single-site experiment); Brazilian beef–GHG emissions 
(both LCA data and process-based models); and UK dairy–GHG emissions, and 
N, P and soil losses (process-based models). Water use in the wheat and most of 
the beef systems examined was limited and so not explored further. We could not 
find sufficient paired yield–externality estimates for the nine remaining sector–
externality combinations.

The land and externality costs of each system were then expressed as total 
area used per unit production (that is, 1/yield) and total amount of externality 
generated per unit production. All estimates included the area used and 
externalities generated in producing externally derived inputs (such as feed 
or fertilizers). For analytical tractability, as in other recent studies1,24, we treat 
impacts occurring at different times and places as being additive. Occasional 
gaps in estimates for a system were filled using standard values from IPCC 
or other sources, or information from study authors or comparable systems 
(details below). Where experiments or LCAs were conducted at multiple sites, 
we built GLMMs in the package lme444 in R version 3.3.145 to identify effects of 
specific management practices on land and externality cost estimates adjusted 
for potentially confounding biophysical and methodological effects. To illustrate 
the effects of statistically significant management variables (those whose 95% 
confidence intervals did not overlap zero; shown in bold in Supplementary 
Table 2), we estimated land and externality costs at the observed minimum and 
maximum values (for continuous management variables) or with the reference 
category and the category that showed the maximum effect size (for categorical 
variables), while keeping other variables constant; we then linked these points 
as arrows on our externality cost/land cost plots (Fig. 2 and Supplementary 
Figs. 1 and 2, with arrows displaced horizontally and/or vertically for increased 
visibility). Where systems generated significant co-products (wheat and rapeseed 
from rotational rice, beef from dairy), we allocated land and externality costs to 
the focal product in proportion to its relative contribution to the gross monetary 
value of production per unit area of farmland (from focal and co-product 
combined)46.
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Fig. 3 | Overall GHG cost against land cost of alternative systems in each sector, including the GHG opportunity costs of land under farming. The y-axis 
values are the sum of GHG emissions from farming activities (plotted in Fig. 2a,c,e,g) and the forgone sequestration potential of land maintained under 
farming and thus unable to revert to natural vegetation (Methods). All costs are expressed per tonne of production. a–d, GHG costs differentiated by 
sector (shown by icons). a, Asian paddy rice. b, European wheat. c, Latin American beef. d, European dairy. The notation is as in Fig. 2. Spearman’s rank 
correlation coefficients (P values) are a, rice–rice: 0.40 (0.017); rice–cereal: 0.80 (<​0.001); b, 0.99 (<​0.001); c, 0.98 (<​0.001); and d, 0.80 (0.13). Credit: 
Icons for Asian paddy rice and European wheat: Freepik (www.flaticon.com).
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Rice and GHG emissions. Systematic searching of Scopus for experimental studies 
reporting both yields and emissions of Chinese paddy rice systems identified 17 
recently published studies47–63 containing 140 paired yield–emissions estimates 
for different systems (after within-year replicates of a system were averaged). To 
limit confounding effects, we analysed separately the data from monoculture 
systems from southern provinces (2 rice crops per year; 5 studies, 60 estimates) 
and rotational systems from more northerly provinces (1 rice and 1 wheat or rape 
crop per year; 12 studies, 80 estimates). The studies documented the effects of 
variation in tillage (yes/no), application rates of inorganic and organic N, and (only 
for rotational systems) irrigation regime (continuous flooding versus episodic 
midseason drainage). There were insufficient data to examine effects of seedling 
density, crop variety, organic practices, biochar application, use of groundcover to 
lower emissions, N fertilizer type, or K or P fertilization.

Land cost estimates were expressed in ha-years per tonne of rice grain  
(that is, the inverse of annual production per hectare farmed). GHG costs were 
expressed in tonnes of CO2 equivalents (CO2e) per tonne of rice grain, and 
included CH4 and N2O emissions for growing and fallow seasons (with the latter 
where necessary based on mean values from refs 47–49,64), and embodied emissions 
from N fertilizer production (Yara emissions database; F. Brendrup, personal 
communication). We were unable to include emissions from producing manure 
or K or P fertilizer, or from farm machinery. For rotational systems, we adjusted 
the land and GHG costs of rice production downwards by multiplying them by the 
proportional contribution of rice to the gross monetary value of production per 
unit area of farmland from rice and co-product combined (using mean post-2000 
prices from ref. 43).

We next built GLMMs predicting variation in our estimates of land cost and 
GHG cost, for the monoculture and rotational data sets in turn. Management 
practices assessed as predictors were tillage regime (binary), application rates 
of organic N and of inorganic N, and irrigation regime (binary; only rotational 
systems). Study site was included as a random effect. For all systems, we adjusted 
for biophysical and methodological differences across sites using the first two 
components from a principal component analysis of site scores for 14 variables: 
annual precipitation, precipitation during the driest and wettest quarters, annual 
mean temperature, mean temperatures during the warmest and coldest quarters, 
maximum temperature during the warmest month, mean monthly solar radiation, 
latitude, longitude, soil organic carbon content, plot size, replicates per estimate, 
and start year (with all climate data taken from refs 65,66). Principal components 1 
and 2 together explained 82.3% and 76.2% of the variance in these variables for 
monoculture and rotational systems, respectively. Soil pH and (soil pH)2 were also 
assessed as additional predictors. For the monoculture models, tolerance values 
were all >​0.4 (indicating an absence of multicollinearity) except for the pH terms 
(both <​0.1), which we therefore removed. For the rotational models, all tolerance 
values indicated an absence of multicollinearity, but (soil pH)2 was removed 
because AICc (corrected Akaike Information Criterion) values indicated that 
model fit was no better than using soil pH alone. Final models (Supplementary 
Table 2) were then used to plot site-adjusted land and GHG costs (as points) and 
statistically significant management effects (as arrows) in Fig. 2a. We also tested the 
effect of allocating land and GHG costs in rotational systems based on the relative 
energy content of rice and co-products67 (rather than a relative contribution to 
gross monetary value; Supplementary Fig. 2).

We adopted similar although simpler approaches for the next two sector–
externality combinations, which again used data from multi-site experiments.

Rice and water use. A systematic search on Scopus yielded 15 recent 
studies57,58,64,68–79 meeting our criteria containing 123 paired estimates describing the 
effects of variation in inorganic N application rate and irrigation regime on land 
and water costs of Chinese paddy rice. We analysed monoculture and rotational 
systems together but considered water use solely for periods of rice production. 
Land cost was expressed in ha-years per tonne of rice grain, and water cost in cubic 
metres per tonne of rice grain (excluding rainfall). We adjusted these estimates for 
site effects in GLMMs of variation in land and water costs using as predictors the 
application rate of inorganic N, and irrigation regime (a six-level factor: continuous 
flooding, continuous flooding with drainage, alternate wetting and drying, 
controlled irrigation, mulches or plastic films, and long periods of dry soil), while 
accounting for the effect of study site as a random effect. Tolerance values were all 
>​0.7. Final models (Supplementary Table 2) were then used to plot site-adjusted 
land and water costs (points) and significant management effects (arrows) in Fig. 2b.  
Almost all sources reported data on only one rice season per year, but one study68 
included separate estimates for early- and late-season rice, so we checked the 
robustness of our findings by re-running the analysis without the early-season data 
from this study (Supplementary Fig. 2).

Wheat and GHG emissions. The Agricultural Greenhouse Gas Inventory 
Research Platform80–83 provided 96 paired measures of variation in yield and N2O 
emissions in response to experimental changes in N fertilizer application rate and 
type. We expanded the emissions profile to include embodied emissions from N 
fertilizer production (from the Yara emissions database; F. Brendrup, personal 
communication). We derived land costs in ha-years per tonne of wheat (at 85% 
dry matter) and GHG costs in tonnes of CO2e per tonne of wheat. Experiments 

were run in three regions, so to adjust for site effects we built GLMMs of variation 
in land and GHG costs fitting study region as a random effect and using the 
application rates of ammonium nitrate, urea and dicyandiamide (a nitrification 
inhibitor) as predictors. Tolerance values were all >​0.7. Adjusted land and GHG 
cost estimates from the final models (Supplementary Table 2) are plotted in Fig. 2c, 
with arrows showing statistically significant management practices.

Wheat and N losses. We assessed this sector–externality combination using data 
from Rothamsted’s long-term Broadbalk wheat experiment, which investigates 
the effects of inorganic N application rates on yields of winter wheat. During the 
1990s changes in field drainage enabled the measurement (alongside yield) of plot-
specific leaching losses of nitrate84. Mean land and N costs—expressed in ha-years 
per tonne of wheat (at 85% dry matter) and kilograms of N leached per tonne of 
wheat, respectively—were averaged across 8 seasons (thus smoothing-out rainfall 
effects), for each of 7 levels of N application (from 0 to 288 kg N (as ammonium 
nitrate) per ha-year; details in Fig. 2 legend). Results are plotted in Fig. 2d.

Beef and GHG emissions. Two types of data were available for this sector–
externality combination, enabling us to compare findings across assessment 
techniques. First we examined all published LCAs of Brazilian beef production85–92. 
Supplementing this with a bioclimatically comparable data set from tropical 
Mexico (R. Olea-Perez, personal communication) yielded 33 paired yield–
emissions estimates for contrasting production systems. These varied in whether 
they used improved pasture, supplementary feeding or improved breeds (which 
if unreported we inferred from age at first calving, and mortality and conception 
rates). There were insufficient LCA data to examine the effects of feedlots, 
silvopasture or rotational grazing. Land costs were calculated in ha-years per 
tonne of carcass weight (CW), incorporating land used to grow feed, and assuming 
a dressing percentage of 50%93. GHG costs were derived in tonnes of CO2e per 
tonne of CW, including enteric CH4 emissions, CH4 and N2O emissions from 
manure, N2O emissions from managed pasture, emissions from supplementary 
feed production (where necessary using values from ref. 86), and embodied GHG 
emissions from N, P and K fertilizer production. There were too few data to 
include CO2 emissions from lime application or farm machinery. Milk production 
was not a significant co-product. To control for site effects, we built GLMMs of 
variation in land and GHG costs using site as a random effect and use of improved 
pasture, supplementary feeding and improved breeds (each a binary factor) as 
predictors. Tolerance values were all >​0.8. Adjusted land and GHG cost estimates 
from the final models (Supplementary Table 2) are plotted in Fig. 2e, with the 
arrow describing a statistically significant management practice.

For comparison we derived an equivalent GHG cost versus land cost plot 
(Fig. 2f) using a process-based model of beef production. RUMINANT29 is an 
IPCC tier 3 digestion and metabolism model that uses stoichiometric equations 
to estimate production of meat, manure N and enteric methane for any given 
pasture quality, supplementary feed quantity and type, cattle breed and region. 
We used plausible combinations of these settings (Supplementary Table 3) and 
corresponding values of feed and forage protein, digestibility and carbohydrate 
content (judged representative of the Brazilian beef sector by M.H.) to derive yield 
and emissions estimates for 86 contrasting pasture systems. To extend beyond the 
scope of the LCA analyses, we also modelled 50 silvopasture systems by boosting 
feed quality to simulate access to Leucaena, and 8 feedlot-finishing systems by 
incorporating an 83–120 day feedlot phase when animals received high-quality 
mixed ration. For each system, we included the whole herd, after determining the 
ratio of fattening/breeding animals using the DYNMOD demographic projection 
tool94, based on system-specific reproductive performance parameters and animal 
growth rates (reflecting pasture quality and management; Supplementary Table 3). 
Breeding animals experienced the same conditions as fattening animals (except 
that in pasture and silvopasture they received no supplementary feed). Stocking 
rates were set to sustainable carrying capacity for pasture and silvopasture, and 
201 animals ha−1 for feedlots (D.M.B. personal observation). Yields were converted 
to land cost in ha-years per tonne of CW, including the area of feedlots and land 
required to grow feed (using feed composition and yield data from refs 43,85). 
RUMINANT emissions estimates were supplemented with estimates of manure 
CH4, CO2 and N2O emissions from feed production, and N2O emissions from 
pasture fertilization (from refs 32,85). Carbon sequestration by vegetation could not 
be included, so we probably overestimate net GHG emissions from silvopasture95. 
All emissions were converted to CO2e units (using conversion factors from refs 32,85 
and feedlot manure distribution from ref. 96) and expressed in tonnes of CO2e per 
tonne of CW.

Dairy and four externalities. We also used process-based models to investigate 
how GHG emissions and N, P and soil losses varied with land cost across five 
dairy systems representative of UK practices (Supplementary Table 4; Fig. 2g–j). 
We modelled three conventional systems with animals accessing grazing for 270, 
180 and 0 days per year, and two organic systems with grazing access for 270 and 
200 days per year. Model farms were assigned rainfall and soil characteristics 
based on frequency distributions of these parameters for real farms of each type, 
with structural and management data (for example, ratios of livestock categories 
and ages, N and P excretion rates) based on the models of refs 31,97,98. Manure 
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management was based on representative variations of the ‘manure management 
continuum’99 (Supplementary Table 4). Physical performance data (annual milk 
yield, concentrate feed input, replacement rate and stocking rate) were obtained 
from the Agriculture and Horticulture Development Board (AHDB) Dairy 
database (M. Topliff, personal communication) for conventional systems and  
from the Department for Environment, Food and Rural Affairs (DEFRA)100 for 
organic systems.

Yields were converted to land cost in ha-years per tonne of energy-corrected 
milk (ECM), including land required to grow feed (from refs 101,102, with yield 
penalties for organic production from ref. 103). As 57% of global beef production 
originates from the dairy sector104, we adjusted land costs downwards by 
multiplying them by the proportional contribution of milk to the gross monetary 
value of production per unit area of farmland from milk and beef combined (using 
prices from the AHDB Dairy database (M. Topliff, personal communication)).

GHG cost estimates for each system comprised CH4 emissions from enteric 
fermentation (based on ref. 31), CH4 and N2O emissions from manure management 
(following refs 32,105), emissions from N fertilizer applications to pasture (from 
refs 106,107), and from feed production (from ref. 108). Emissions from farm 
machinery and buildings were not included. Emissions were then summed and 
expressed in tonnes of CO2e per tonne of ECM. Nitrate losses of each system were 
derived from the National Environment Agricultural Pollution–Nitrate (NEAP-N) 
model109,110, while P and soil losses were estimated using the Phosphorus and 
Sediment Yield Characterisation In Catchments (PSYCHIC) model98,111. These last 
three costs were expressed in kilograms per tonne of ECM and (as with land costs) 
downscaled by allocating a portion of them to beef co-products, based on milk 
and beef prices. Finally, to check the effect of this allocation rule, we re-ran each 
analysis instead allocating costs using the relative protein content of milk and beef 
(from ref. 104; Supplementary Fig. 2).

GHG opportunity costs of land farmed. Alongside the GHG emissions generated 
by agricultural activities themselves (analysed above), farming typically carries an 
additional GHG cost. Wherever the carbon content of farmed land is less than that 
of the natural habitat that could replace it if agriculture ceased, farming imposes an 
opportunity cost of sequestration forgone112, whose magnitude increases with the 
area under production (and hence with the land cost of the system). We quantified 
this GHG cost using the forgone sequestration method, whereby retaining the 
current land use is assumed to prevent the sequestration in soils and biomass that 
would occur if the land was allowed to revert to climax vegetation (see details in 
Supplementary Table 5).

For each forgone transition, values for annual biomass accrual (≤​20 years) were 
taken from Table 4.9 of ref. 32, assuming that the climax vegetation for UK wheat 
and dairy was ‘temperate oceanic forest (Europe)’, for Chinese rice it was ‘tropical 
moist deciduous forest (Asia, continental)’, and for Brazilian beef it was ‘tropical 
moist deciduous forest (South America)’. The carbon content of all biomass was 
assumed to be 47% of dry matter (ref. 32 Table 4.3).

Changes in soil carbon values were taken from the relevant mean percentage 
change in soil organic carbon values for each land conversion from a global 
meta-analysis113. For UK wheat and Chinese rice, we used values for conversion 
of cropland to woodland; for UK dairy and Brazilian beef, we used conversion of 
grassland to woodland for grazing land and conversion of cropland to woodland 
for land used to grow feed. Initial soil carbon values were taken from Table 2.3 of 
ref. 32. We assumed that the soils for UK wheat were ‘cold temperate, moist, high 
activity soils’, for Chinese rice, they were ‘tropical, wet, low activity soils’, for UK 
dairy, they were ‘cold temperate, moist, high activity soils’ for grazing land and 
for producing imported feed they were ‘subtropical humid, LAC soils’ (South 
America), and for Brazilian beef for both grazing and feed production they were 
‘tropical, moist, low activity soils’. In each case, the relevant percentage change in 
soil organic carbon was multiplied by the initial soil carbon stock to calculate an 
absolute change, which, following IPCC guidelines32, we assumed took 20 years.

Total annual forgone sequestration was then estimated by adding this annual 
change in soil organic carbon and the annual accrual of biomass carbon under 
reversion to climax vegetation. We assumed (as in ref. 34) that each 1 ha reduction 
in land cost results in 1 ha of recovering habitat. As above, our land cost estimates 
included land needed to produce externally derived inputs, and (for rotational rice 
and dairy) were adjusted downwards based on the value of co-products. These 
GHG opportunity costs were then added to the direct GHG emissions estimates of 
each system, and the summed values were plotted against land cost (Fig. 3).

As a sensitivity test of our key assumptions, we re-ran these analyses assuming 
that carbon recovery rates are halved, or that (because of rebound or similar 
effects38–40) half of the area potentially freed from farming is retained under 
agriculture. These two changes to our assumptions have numerically identical 
effects, shown in Supplementary Fig. 3. Note that our recovery-based estimates 
of the GHG costs that farming imposes through land use are conservative, in that 
they are roughly 30–50% of those obtained from calculating GHG emissions from 
natural habitat clearance (annualized, for consistency with the recovery method, 
over 20 harvests; data not shown).

Code availability. The R codes used for the analyses are available from the 
corresponding author upon request.

Data availability
The data that support the findings of this study are available from the corresponding 
author upon request.
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