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Abstract

Background Tropical forests are threatened by intensi-
fying natural and anthropogenic disturbance regimes.
Disturbances reduce tree cover and leave the organic
topsoil vulnerable to erosion processes, but when re-
sources are still abundant forests usually recover.
Scope Across the tropics, variation in rainfall erosivity —
a measure of potential soil exposure to water erosion —
indicates that soils in the wetter regions would experience
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high erosion rates if they were not protected by tree cover.
However, twenty-first-century global land cover data
reveal that in wet South America tropical tree cover is
decreasing and bare soil area is increasing. Here we
address the role of soil erosion in a positive feedback
mechanism that may persistently alter the functioning of
disturbed tropical forests.

Conclusions Based on an extensive literature review,
we propose a conceptual model in which soil erosion
reinforces disturbance effects on tropical forests, reduc-
ing their resilience with time and increasing their likeli-
hood of being trapped in an alternative vegetation state
that is persistently vulnerable to erosion. We present
supporting field evidence from two distinct forests in
central Amazonia that have been repeatedly disturbed.
Overall, the strength of the erosion feedback depends on
disturbance types and regimes, as well as on local envi-
ronmental conditions, such as topography, flooding, and
soil fertility. As disturbances intensify in tropical land-
scapes, we argue that the erosion feedback may help to
explain why certain forests persist in a degraded state
and often undergo critical functional shifts.

Keywords Dynamics - Ecosystem services - Feedback -
Forest restoration - Global change - Secondary forests
Introduction

Tropical forests across the world are disappearing due to

natural and human-related causes (Barlow et al. 2018;
Song et al. 2018). While extreme droughts and wildfires
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are happening more frequently (Alencar et al. 2015;
Brando et al. 2014), agricultural frontiers are expanding,
converting forests into croplands, pastures and planta-
tions (Gibbs et al. 2010), and also spreading more subtle
disturbances deeper into the forest, such as fragmenta-
tion and logging (Barlow et al. 2016; Berenguer et al.
2018). These disturbances reduce biodiversity, alter eco-
system functioning (Hooper et al. 2012; Naeem et al.
2012) and threaten the provision of vital services, such
as carbon storage, rainfall recycling, and food supply for
local societies (Cardinale et al. 2012; Millennium
Ecosystem Assessment 2005). When it comes to tropi-
cal landscapes converted to croplands or pasture,
one important service provided by trees is soil
protection from erosion (Millennium Ecosystem
Assessment 2005).

Erosion is the physical process of topsoil removal,
which degrades soil quality and reduces ecosystem pro-
ductivity (Lal 2001). In all ecosystems, common natural
erosion agents are wind and water (Pimentel and
Kounang 1998). In semi-arid regions for instance, the
vegetation is often patchy because plants retain water
and avoid erosion, facilitating the establishment of new
individuals (Ludwig et al. 2005). Yet, when fires trans-
form plants and soil organic matter into ashes, winds can
easily blow them away (Kauffman et al. 1993). In con-
trast, tropical rainforests are exposed to high rainfall
erosivity, an energy unit that reflects how external rain-
fall conditions can potentially influence erosion
(Panagos et al. 2017). In these ecosystems, vegetation
and litter cover removal may strongly accelerate erosion
(Borrelli et al. 2017; Labriére et al. 2015). Moreover,
soil vulnerability to erosion, known as erodibility (Lal
and Elliot 1994), is usually lower when the soil has more
organic matter, which stabilizes soil aggregates, in-
creases porosity and reduces vulnerability to runoff
(Don et al. 2011; Feller and Beare 1997; Pimentel and
Kounang 1998). Disturbances that expose the soil or-
ganic layer, such as fire or tillage, increase erodibility by
making soils more detached and ready to be removed
(Certini 2005; Lal 2001; Pimentel and Kounang 1998;
Shakesby and Doerr 2006). When topsoils erode, usu-
ally most of the organic matter and nutrients present in
the soil are also lost (El-Swaify et al. 1982; Feller and
Beare 1997; Pimentel and Kounang 1998; Ross et al.
1990), implying that erosion may lead to more erosion,
until soils become highly degraded (Anselmetti et al.
2007; Stocking 2003). Also, erosion can directly alter
vegetation composition via removal of the soil seed
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bank (Garcia-Fayos et al. 2010). There are several other
important processes that cause soil degradation, such as
chemical leaching and volatilization of nutrients, salini-
zation, and soil biodiversity loss. Nonetheless, the phys-
ical process of erosion is arguably the degradation
process that has caused most drastic and potential-
ly irreversible changes in ecosystems around the
world (El-Swaify et al. 1982; Lal 2001; Pimentel
and Kounang 1998).

Over geological timescales, erosion-deposition pro-
cesses have contributed to shape natural landscapes.
Humans have accelerated these processes (El-Swaify
et al. 1982; Wilkinson and McElroy 2007) with conse-
quences for ecological systems (Ellis 2015). Erosion has
been a societal and ecological problem since the start of
sedentary agriculture (Lowdermilk 1953; Middleton
1930; Olson 1981). In pre-Classic Maya landscapes,
for example, extensive deforestation exposed shallow
fertile soils to long-term erosion (Beach et al. 2006;
Olson 1981), reducing soil carbon so severely that its
effects persist until today (Douglas et al. 2018). Soil
degradation by erosion has negative consequences for
ecosystem productivity and can lead to economic losses
at local, regional and continental scales (Garcia-Ruiz
et al. 2017; Lal 1998, 2001). More recently, when
humans expanded their industrial agriculture into tropi-
cal forests around 1945, a wave of erosion reached
places where heavy rain events caused the stron-
gest erosion rates ever recorded, such as on steep
slopes in Rwanda and Guatemala (McNeill and
Winiwarter 2004).

Although the impacts of soil erosion on agricultural
productivity and sustainability have been well studied
globally (Lal 1998; Lawrence et al. 2010; Song et al.
2005), we still do not understand how it affects the
resilience of tropical heterogeneous forests under inten-
sifying disturbance regimes. Some tropical forest soils
are exposed to very high rainfall, which makes them
particularly at risk (Fig. 1a). Most of these soils have
remained protected by tropical forest during the
Holocene, especially in the Neotropics (Nolan et al.
2018). Current human activities, however, are
expanding areas with bare soil and low tree cover (Fig.
1b-1), particularly in South America (Fig. 1b, f). The
Millennium Ecosystem Assessment (2005) states that
“Severe depletion of soil fertility results in a spiral of
soil degradation that can eventually render the land
unsuitable for crop production.” In this article, we ask:
could tropical forests exposed to varying forms of
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Fig. 1 Rainfall erosivity vs. trends in land-cover change. a. Global
rainfall erosivity map (MJ mm ha ' h™" yr. ™) showing regions with
highest erosivity in blue, and with lowest in red. The colour-scale is
cutat 15,000 MJ mm ha ' h™" yr.”'. Changes in bare soil from 2000
through 2015 for (b) South America, (¢) Africa, (d) Australia-Asia
and (e) the whole tropics (between 15°N and 35°S). Changes in tree
cover from 2000 through 2015 for the (f) South America, (g) Africa,
(h) Australia-Asia and (i) whole tropics. In all plots (b-i), red curves
indicate 5th and 95th percentiles. They show that tropical soils are
being increasingly exposed to high rainfall erosion due to

disturbance, such as wildfires and logging, also undergo
such a downward spiral of soil degradation? What
would be the consequences for forest resilience? One
possibility is that forests may undergo compositional
and functional changes. However, as erosion gradually
depletes soil fertility, forest resilience may drop so se-
verely (Fig. 2) that the ecosystem could collapse into an
alternative savanna-like state (Hirota et al. 2011) or an
open degraded forest state (Ghazoul et al. 2015). Here
we define resilience as the ability to maintain current
functioning and interactions while facing repeated dis-
turbances, or in other words, the size of the forest basin
of attraction relative to the alternative one (Holling

deforestation and degradation, especially in South America. Land
cover data were resampled to 30 arcsecond resolution to match
erosivity data (Panagos et al. 2017). High temporal resolution
rainfall data from 3540 stations across the world were calculated
for the R-factor (rainfall erosivity) considering spatial variations in
rainfall regimes (duration, magnitude and intensity) with the
Revised Universal Soil Loss Equation (RUSLE), and erosivity
was extrapolated globally based on correlations with climatic data.
Land-cover changes were extracted from MODIS VCF 5 (DiMiceli
et al. 2011)

Erosion reshapes the forest basin of attraction

Potential

State of the system

Fig. 2 Soil erosion may reshape the resilience of disturbed
tropical forests. Over ecological time-scales, erosion may alter soil
fertility and reduce the forest’s basin of attraction (vertical arrows),
increasing the probability of shifting to an alternative stable state
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1973). These questions seem relevant when tropical
forests are becoming increasingly trapped by short
disturbance return intervals (Barlow and Peres
2008; Berenguer et al. 2018; Flores et al. 2016).
Moreover, climate change may alter rainfall ero-
sivity across the tropics (Panagos et al. 2017), as
suggested for instance by the recent intensification
of the Amazonian hydrological cycle (Gloor et al.
2013), potentially accelerating erosion in disturbed
forest sites. In this conceptual article, we explore
existing evidence and discuss how future distur-
bance regimes, involving different types of anthro-
pogenic and natural forest disturbances, may accel-
erate soil erosion, alter ecosystem functioning and re-
shape tropical forest resilience.

Disturbance as a window for soil erosion

When disturbances reduce vegetation cover, they open a
window of opportunity for soil erosion as geomorpho-
logical activities intensify (Prosser and Williams 1998;
Shakesby and Doerr 2006). By studying native
Australian eucalyptus forests, Prosser and Williams
(1998) found that the destruction of vegetation and litter
cover by fire reduced soil infiltration and increased
runoff during strong rain events, making soils vulnera-
ble to erosion. Only when the vegetation started to
recover did erosion rates return back to normal.
Intense fires, in addition to destroying the vegetation
and litter, causing severe nutrient losses through volatil-
ization, may also increase soil hydrophobicity, contrib-
uting to make it more vulnerable to water erosion
(Certini 2005; DeBano 2000; Kauffman et al. 1995).
Similar processes have been observed in temperate eco-
systems across the world (Shakesby and Doerr 2006),
and reveal that when disturbances expose more than
60% of the soil, sediment yield rates increase abruptly
(Johansen et al. 2001; Pimentel and Kounang 1998).
Most of our knowledge on how disturbances accelerate
erosion processes comes from temperate and semi-arid
ecosystems (Lal 2001; Pimentel and Kounang 1998),
where wildfires and deforestation for crop production
are well-studied disturbances (Pimentel and Kounang
1998; Shakesby and Doerr 2006).

In the tropics, large-scale conversion of forests into
croplands and pastures in recent decades has increasing-
ly exposed soils to erosion (Borrelli et al. 2017). When
such activities persist over decades, soils become de-
graded and unproductive (Celentano et al. 2017; Nesper
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etal. 2015; Pimentel et al. 1995), forcing land owners to
expand their activities deeper into the forest (Gibbs et al.
2010). Several studies have also investigated how the
intensification of small-scale shifting agriculture may
impact forest regrowth capacity (e.g. Chazdon 2014;
Jakovac et al. 2015; Lawrence et al. 2010). When the
regrowth phase of the cultivation cycle is postponed to
enhance short-term profits, nutrient losses from leaching
and erosion increase, while atmospheric nutrient inputs
via canopy trapping decrease, threatening the system’s
sustainability (Cunningham 1963; Fearnside 1980;
Jakovac et al. 2016a; Jordan and Herrera 1981; Lal
1998, 2001; Lawrence et al. 2007; Pellegrini et al.
2018; Pimentel et al. 1995).

Studies addressing the impacts of land-use on tropi-
cal forests commonly consider the process of soil deg-
radation by erosion (e.g. Borrelli et al. 2017; Lawrence
et al. 2010). Yet, when it comes to more subtle forest
disturbances the elusive temporal changes in the soil are
often overlooked (Table 1) (Boardman 2006; Pimentel
and Kounang 1998). For instance, severe drought events
can cause the death of large trees (Phillips et al. 2009;
Rowland et al. 2015), which contribute strongly to soil
infiltration (Celentano et al. 2017). Therefore, the loss of
these large trees from the system may potentially en-
hance soil erosion rates. Interestingly, when local people
manage their land over generations, they usually realize
when soils are degrading (Jakovac et al. 2016a). Soil
degradation due to erosion and leaching can be an
important legacy of past disturbances, with potentially
far-reaching implications for vegetation dynamics
(Chazdon 2003). For example, at the core of the
Amazon, far from the agricultural frontier, wildfires in
intact floodplain forests are resulting in severe topsoil
erosion (Flores et al. 2017). In Indonesia, conversion of
tropical forest into oil-palm and rubber-tree plantations
is resulting in large losses of soil organic carbon due to
topsoil erosion (Guillaume et al. 2015). Selective log-
ging in slope forests of Malaysia triggers the formation
of gullies along logging roads and trails, which may
eventually cause landslides (Douglas et al. 1999). In
seasonally dry tropical forests of Mexico and Brazil,
studies found that after fire, nutrients converted into
ashes were immediately eroded by water (Maass et al.
1988) and wind (Kauffman et al. 1993). Agroforestry
practices that involve opening the canopy and cleaning
the understory (Levis et al. 2018) may also increase
topsoil erosion (Brandt 1988; Guillaume et al. 2015;
Labriére et al. 2015).
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Table 1 Disturbance types and their influences on tropical forest cover and soil erosion

Disturbance Impact on forest Duration of impact Frequency Erosion (t ha 'y ™) References
cover on forest cover

Undisturbed forest - - - 0-1.2 Borrelli et al. 2017;
* Sidle et al. 2006

Agroforestry low decades-millennia persistent 0.2-107 Labriére et al. 2015;
* Sidle et al. 2006

Extreme drought low months-years aperiodic no data -

Logging w/ roads/trails medium years-decades cyclic 0.03-15.5 Labriére et al. 2015

Wildfire medium decades-centuries stochastic 17.1 Goldammer 1990

Shifting cultivation high years-decades cyclic 1-10 Borrelli et al. 2017

Large-scale croplands high decades-centuries persistent 5-50 Borrelli et al. 2017

* Based on data reported for forests above 0° to 12° slopes

Although some of these disturbances may cause sub-
tle and ephemeral impacts on forest structure, they are
also becoming more pervasive in tropical forests
(Alencar et al. 2015; Barlow et al. 2016), increasing
bare soil area and decreasing forest cover (Fig. 1b-i).
Different disturbances (Table 1) also happen in synergy,
trapping ecosystems in relatively open vegetation states
(Barlow and Peres 2008; Berenguer et al. 2018; Flores
et al. 2016) persistently vulnerable to topsoil erosion
(Fig. 3). In the wet tropics where rainfall erosivity is
high (Panagos et al. 2017), disturbances that expose bare
soils, such as logging, can increase erosion rates more
than hundredfold (Labricre et al. 2015). Considering
that the area of tropical forests exposed to selective
logging is comparable or even larger than the area
deforested annually (Asner et al. 2005), soil erosion
rates in these ecosystems may be much higher than we
imagine.

The erosion positive feedback loop

The resilience of tropical forests depends on their ability
to deal with disturbances while maintaining similar
functioning (Holling 1973; Scheffer et al. 2001).
Particularly, feedbacks between vegetation and environ-
ment play a crucial role (DeAngelis et al. 1986). A well-
known feedback is the interaction between trees and
fire, in which dense forest cover suppresses flammabil-
ity, allowing trees to recruit (Hoffmann et al. 2012).
Other examples involve the interaction between trees
and rainfall recycling at the regional scale (Staal et al.
2018a; Zemp et al. 2017), and the capture of atmospher-
ic phosphorus at the local scale, which adds external P

inputs to the ecosystem increasing forest resilience
(Lawrence et al. 2007). However, after disturbances,
small changes in ecosystem functioning may suddenly
accentuate, often propelled by positive (self-reinforcing)
feedbacks, and initiate abrupt transitions in the system
(DeAngelis et al. 1986; Scheffer et al. 2001). For exam-
ple, in the tree-fire feedback case, forests are usually not
flammable, but when disturbances reduce forest cover
below 60%, flammability increases steeply, allowing
fires to trap the ecosystem in an open vegetation state
(van Nes et al. 2018).

Normally in undisturbed forests, tree-soil interactions
enhance forest resilience (black arrows in Fig. 4) (Paiva
et al. 2015; Silva et al. 2013; Staal and Flores 2015).
Trees produce litter with high nutrient content, which is
quickly recycled back to the soil and re-absorbed by
their roots, as shown in forests and woodlands of trop-
ical South America (Bond 2010; de Oliveira et al. 2017;
Paiva et al. 2015; Silva et al. 2013; da Silva et al. 2018).
Tree litter production may also contribute to soil organic
matter accumulation and topsoil formation (Cotrufo
et al. 2015). However, when disturbances reduce tree
cover, forests becomes vulnerable to changes in impor-
tant feedbacks. The plant-soil feedback is weakened as
young recruiting trees often produce less litter biomass
and of lower nutrient quality (da Silva et al. 2018),
hence reducing organic soil formation (Cotrufo et al.
2015). In addition, erosion rates are expected to increase
(Fig. 3; Table 1) (Allen 2007; Labriére et al. 2015; Reid
et al. 1999), removing organic matter and nutrients
(Feller and Beare 1997; Lal 2001; Pimentel and
Kounang 1998). As soils become gradually less fertile,
forest recovery slows-down, until the ecosystem is
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Disturbance 1 Disturpance 2

Forest cover (%)

Disturbance 3

Disturpance 4

Soil erosion rate

Soil fertility

Fig. 3 Hypothetical temporal dynamics of forest tree cover, soil
erosion rates, and soil fertility in two tropical forests with different
disturbance regimes. Black lines represent a repeatedly disturbed
forest, for instance by fire or shifting cultivation. Brown lines
represent a persistently disturbed forest, for example by conver-
sion into cropland. Soil erosion rates mirror tree cover; they
increase when the forest is disturbed, and decrease as forests
recover their crown and litter cover (after Shakesby and Doerr

eventually trapped in a state of persistently high soil
erosion rates and low soil fertility (Fig. 4). This erosion
feedback loop is formed by a series of interactions,
resulting in a net self-amplifying effect that may poten-
tially push the ecosystem to an alternative state (Fig. 2).

In semiarid and Mediterranean ecosystems, the ero-
sion feedback is a well-known mechanism that deter-
mines where plants can establish (Ludwig et al. 2005).
Combined with wildfires, this feedback has driven the
collapse of cork oak forests and the expansion of
shrublands (Acécio et al. 2009). In disturbed tropical
forests, the erosion feedback has often been neglected,
with only a few examples indicating that it may poten-
tially push the ecosystem to a degraded forest (Jakovac
et al. 2016b) or savanna-like state (Flores et al. 2017).
Although our simple conceptual model (Fig. 4) does not
account for spatial heterogeneity, we expect that variation
in disturbance regimes and resource availability might
influence how the erosion feedback will affect forest
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Time

2006). During the time that forests are open, soils erode and lose
fertility cumulatively, making the ecosystem gradually less pro-
ductive. In the persistently disturbed site (brown lines), while
forest cover remains low, erosion rates decrease slowly as mature
forest soils lose finer sediments, also causing soil fertility losses to
slow-down (Stocking 2003). Nonetheless, soil fertility decreases
much faster than in the repeatedly disturbed site (black lines)

resilience. For instance, in logged forests erosion may
be heterogeneous; faster on logging roads and trails, but
slower where trees and litter are preserved (Labricre et al.
2015), and resilience will depend on factors such as
topography, with slope forests being particularly vulner-
able to landslides (Douglas et al. 1999). Natural soil
fertility gradients may also affect forest vulnerability to
the erosion feedback. On fertile soils, disturbed forests
are expected to recover faster, because nutrients remain
available even when erosion is intense. In contrast, on
highly weathered soils, most nutrients are retained in the
forest, litter and soil organic matter, implying that erosion
may severely reduce forest resilience (Fig. 2).

Examples from central Amazonian forests
To illustrate how the erosion feedback may reshape the

resilience of disturbed tropical forests (Fig. 2), we com-
pare two distinct ecosystems in central Amazonia;
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Fig. 4 Diagram of forest-soil interactions, revealing two overlap-
ping feedback loops that may contribute to either stabilize tropical
forests, or accelerate the loss of resilience. In black: tree cover
enhances soil fertility by supplying nutrient-rich litter that is
quickly recycled (de Oliveira et al. 2017; Paiva et al. 2015), and
soil fertility accelerates forest recovery after disturbances (Bond
2010; Silva et al. 2013). In blue: high tree cover protects the soil

uplands (terra firme) and blackwater floodplains
(igapo). In both cases, the forest has experienced de-
cades of repeated disturbance events. We analysed
changes in tree basal area recovery rates and in the
topsoil clay fraction. Because clay fraction often corre-
lates with organic matter, it is a good indicator of soil
fertility (Feller and Beare 1997). For floodplain ecosys-
tems, data were collected from the middle Negro river
region, where in extremely dry years wildfires spread
from campfires and swiddens to undisturbed floodplain
forests (Flores et al. 2014). We obtained data for 15
forest sites burnt once or twice in the past 40 years.
For upland forests, data were collected from the lower
Tefé river region, where most disturbances are

Agents of soil erosion

« Water runoff ,/
* Floods [
* Water table

+ Wind

from erosion (Pimentel and Kounang 1998), but when a distur-
bance reduces tree cover, erosion rates increase, removing the
topsoil rich in organic matter and reducing soil fertility (Feller
and Beare 1997; Lal 2001; Pimentel and Kounang 1998). Loss of
soil productivity slows down forest recovery after disturbances,
trapping the ecosystem in a low tree cover state. Illustration
adapted from Staal and Flores (2015)

associated with small-scale shifting agriculture
(Jakovac et al. 2015). We obtained data for 33 forest
sites disturbed multiple times (1-7) by slash-and-burn
practices for manioc plantation. In this system, each
cycle lasts on average seven years; two for cultivation,
and five for secondary forest regrowth. For all study
sites, we obtained data from all trees >1 cm of diameter
at breast height (DBH) and superficial soil. We pro-
duced chronosequences (space-for-time substitution) to
analyse temporal changes in tree basal area based on the
time after the latest disturbance, and for clay fraction
based on the time after the first disturbance event. In this
way, we could observe how forest recovery rates
changed after each disturbance event, and how this

@ Springer



Plant Soil

related to soil changes that accumulated since the start of
the disturbance regime (as shown in Fig. 3).

In Fig. 5 (left panels), we show how recovery rates of
tree basal area in floodplain and upland forests change after
each disturbance event. Floodplain forests already recover
more slowly than upland forests after the first fire event,
yet after a second fire, recovery slows-down even more.
Upland forests recover faster than floodplain forests, but
with each disturbance event, recovery slows-down as well.
In both cases, loss of forest recovery capacity seems to be
linked with a reduction in soil fertility. Figure 5 (right
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Fig. 5 Field evidence from central Amazonian forests of how
ecosystem dynamics changes when it is disturbed repeatedly. (a,
b in blue-scale) Floodplain forests were disturbed by wildfires, and
(c, d in gray-scale) upland forests by slash-and-burn shifting
agriculture. Left panels show how recovery rates of tree basal area
change after each fire event. Because in both cases, disturbances
caused near 100% tree mortality (Flores et al. 2016; Jakovac et al.
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panels) shows that clay is lost from the soil, suggesting
that both ecosystems are also losing organic matter (Feller
and Beare 1997). Such gradual loss of soil fertility is
expected to reduce forest recovery capacity, as shown in
the left panels (Fig. 5). Because clay fraction seems to
erode faster in floodplains than in uplands, floodplain
forests should be more vulnerable to the erosion feedback.
The slowing-down of forest recovery by itself can be
interpreted as an indicator of approaching collapse (van
de Leemput et al. 2018), and the soil erosion feedback loop
may be an important underlying mechanism (Fig. 4).
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2015), we forced the intercept at time = 0. Letters D indicate the
sequence of disturbances: from one to two in floodplain forests,
and from one to more than five in upland forests. Right panels
show how clay fraction changes after the first disturbance event.
Note how forest recovery rate decreases faster in floodplains than
on uplands, suggesting that erosion is more intense on these
ecosystems
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Spatial heterogeneity in soil erosion risk

As our study cases illustrate, following disturbances,
changes in forest dynamics will depend on environmental
conditions that affect erosion. At continental scales, soil
erosion risk varies in response to rainfall, with soils in
wetter regions being more exposed to storms (Panagos
etal. 2017) (Fig. 1). At the landscape scale, it varies with
other environmental factors that interfere with how water
and wind will act upon the soil (Lal 2001; Pimentel and
Kounang 1998). Arguably the most striking factors are
topography and flooding, which may enhance particular-
ly water erosion (Pettit and Naiman 2007). Spatial differ-
ences in these landscape features may not be so important
when forest cover is intact, but may become relevant after
disturbances. We illustrate this in Fig. 6, for which we
have selected three classical tropical forest ecosystems
that represent well how some of these factors may influ-
ence soil erosion risk: (1) upland (non-flooded) forests,
(2) floodplain forests, and (3) white-sand forests. We also
show some variations among them that may be relevant
for erosion risk.

In disturbed upland forests (Fig. 6a), soils erode by
water runoff during heavy rain events, by trade winds
and also by wind storms such as blowdowns (Certini
2005; Lal 2001; Pimentel and Kounang 1998). Runoff
impact is more severe on steep slopes, where it can lead
to rill and gully erosion, and in extreme cases causing

a Upland forest - flat |y

Clay erosion,
sand deposition
from wind storms

—_—

Clay erosion
from runoff avents
»

L)

Clay erosion,
=and deposition
from flood waters.

Fig. 6 Tropical forests in different environmental conditions that
may determine erosion risk after disturbances. The main erosion-
deposition processes are: (a) and (b) sheet and rill erosion from

Intense clay erosion
from runoff events

Clay deposition
from flood waters

landslides (Fig. 6b). This has been shown in forests that
were damaged for instance by logging roads and trails
(Douglas et al. 1999; Pettit and Naiman 2007). On
windward slopes, wind erosion removes light sedi-
ments, such as clay and silt, as well as nutrients (Tao
2004). This process is well-known in dune ecosystems
(Moeslund et al. 2013), yet it may also affect other forest
landscapes with marked topography. In addition to re-
moving clay and nutrients, winds may transport heavier
sand particles (Moeslund et al. 2013; Tao 2004), con-
tributing to reduce soil fertility in the places where sand
is deposited (Anderson 1981; Martinelli et al. 1999).
Sand deposition by wind has been shown as a mecha-
nism for the expansion of deserts in drylands (Shi et al.
2004; Tao 2004; Tomasella et al. 2018), and of white-
sand ecosystems in the Amazon (Anderson 1981;
Carneiro Filho et al. 2002).

Close to streams, in disturbed valley and gallery
forests (Fig. 6¢), soils are eroded not only by runoff
and wind, but also by flood events that occur in aperi-
odic pulses (Junk et al. 2011), carrying sediments and
nutrients to stream channels (Luizdo et al. 2004; Pettit
and Naiman 2007). Flooding can be a strong erosion
agent, as we have shown in our study case (Fig. 5),
implying that floodable forests may be particularly vul-
nerable to the erosion feedback loop. Forests that are
seasonally flooded by nutrient-poor blackwater or clear-
water rivers (Fig. 6d) are perhaps among the most
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vulnerable, because flooding waters provide few nutri-
ent inputs for tree growth (Schongart et al. 2005). In
contrast, forests that are flooded by white water rivers
rich in nutrients and fine sediments (Fig. 6¢), such as
those along the Amazon river, are expected to be more
resilient to disturbances, because they periodically re-
ceive new deposits of fertile soil from the Andes (Aalto
et al. 2003; Wittmann et al. 2004).

In landscapes where the water-table moves vertically
with the seasons, water may carry clay and nutrients
deep, far from tree roots (Anderson 1981; Heyligers
1963; Janzen 1974). In the long-term, this process cre-
ates white-sand soils known as podzols (Klinge 1965;
Richards 1941), which are also vulnerable to erosion
(Heyligers 1963; Sauer et al. 2007) (Fig. 6f). A large
fraction of these white-sand forests is seasonally flooded
by blackwater rivers and streams (Klinge 1965; Junk
et al. 2011), which may enhance erosion rates. Trees in
these ecosystems are known to form thick (10-30 cm)
root mats that retain hummus and nutrients dissolved in
the water (Stark and Jordan 1978). These root mats are
also common in blackwater floodplains (dos Santos and
Nelson 2013), suggesting that both ecosystems share
this functional characteristic as a way maximise nutrient
acquisition. Yet, when disturbances destroy the root mat,
sediments become vulnerable to be transported to other
areas (Carneiro Filho et al. 2002; Sauer et al. 2007).

Conclusions and implications

In this conceptual article, we argue that when tropical
forests are disturbed repeatedly, low vegetation cover and
high soil erosion rates interact in a self-reinforcing feed-
back loop that reduces forest resilience (Fig. 4) and
increases the risk of ecological transitions (Fig. 2). We
provide empirical evidence from two distinct forest types
in Central Amazonia, supporting the idea that erosion
may be a key underlying mechanism for resilience loss
(Fig. 5). Therefore, analyses of the erosion feedback in
disturbed ecosystems may help us understand, for in-
stance, why certain forests persist degraded, and how
biomes expand and retract. Although the erosion feed-
back is a process that involves interactions between soils
and plants at the local scale, its implications may extend
to landscapes and broader regions. For instance,
Amazonian forests along the deforestation frontier may
have been losing resilience due to this feedback, which
may cascade further west into the basin through reduced
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rainfall recycling (Staal et al. 2018a). Also, in other
tropical regions exposed to disturbances over centuries,
entire forest biomes may have lost resilience, for example
due to limited arrival of propagules, and recovery now
depends on active restoration (e.g. Cavelier et al. 1998;
Mendes et al. 2018).

One important change caused by erosion in disturbed
forests is that new environmental filters start to emerge,
reshaping plant species composition (e.g. Jakovac et al.
2016b) and altering ecosystem functioning (Hoffmann
et al. 2012). Erosion reduces not only soil fertility, but
also soil infiltration and storage capacity (Pimentel and
Kounang 1998), thus altering fine scale water availability.
Nutrient and water availability are factors that may deter-
mine variations in tree composition and functioning
across tropical landscapes (Baldeck et al. 2013; Cosme
etal. 2017; Ter-Steege et al. 2006). Usually, trees adapted
to low nutrient and water availability have a conservative
physiological strategy (Diaz et al. 2004; Wright et al.
2010), involving small and tough leaves (Wright et al.
2004), as well as other adaptations that provide high
hydraulic safety (Anderegg et al. 2016; Oliveira et al.
2019; Santiago et al. 2018). Thus, when nutrient and
water availability are reduced due to erosion, slow-
growing trees are expected to dominate, potentially alter-
ing forest dynamics (Diaz et al. 2004; Quesada et al.
2012; Wright et al. 2010). With reduced soil water avail-
ability, small trees are more likely to survive and recruit
because they tend to be more drought-resistant than tall
trees, which could result in the development of shorter
forests (Rowland et al. 2015). Reduced soil water storage
capacity in eroded sites may also indirectly increase
ecosystem flammability (Chen et al. 2013), which is
already high in most landscapes with low tree cover
(van Nes et al. 2018). As a result, fires may add another
filter to the system, selecting for plants with thick barks
and high resprouting ability (Bond and Midgley 2001;
Jakovac et al. 2016b). Another indirect mechanism asso-
ciated with erosion that can determine changes in vege-
tation composition is the removal of soil seed banks,
which excludes seed-dependent tree species and favours
resprouters (Garcia-Fayos et al. 2010).

Changes in environmental filters associated with ero-
sion may not only alter forest functioning, but also trigger
more drastic shifts in ecosystems. It is now well accepted
that across the tropics, forests and savannas can be alter-
native vegetation states in regions with intermediate
levels of mean annual rainfall (Hirota et al. 2011; Staver
et al. 2011; Staal et al. 2018b). In these bistable
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landscapes, forests are commonly found on soils with
higher resource availability, whereas savannas tend to
occur where soil conditions are more limiting
(Hoffmann et al. 2012; Lehmann et al. 2014;
Veenendaal et al. 2015). This spatial pattern suggests that
shifts between both states might involve changes in soil
conditions, and the erosion feedback loop that we de-
scribe seems to be a potential underlying mechanism.
There is some evidence suggesting that soil erosion can
indeed facilitate the expansion of savanna vegetation
(Cavelier et al. 1998; Flores et al. 2017), although in
most cases, repeatedly disturbed tropical forests tend to
persist in a degraded state dominated by forest trees that
tolerate fire, low nutrient and water availability, as well as
exotic invasive grasses (Barlow and Peres 2008;
Berenguer et al. 2018; Devisscher et al. 2016; Jakovac
et al. 2016a; Silvério et al. 2013; Veldman and Putz
2011). Considering that tropical forests are increasingly
exposed to disturbances, understanding how erosion may
act as a resilience drain in these systems may help soci-
eties to manage the risk of ecological transitions (Scheffer
et al. 2015), for instance by promoting fast recovery and
restoration.
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