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Abstract: Soybean (Glycine max L.) is one of the most important crops grown globally. Biochar
has been proposed as an alternative to aid sustainable soybean production. However, comprehen-
sive studies that include both the economic aspects of soybean production and biochar are scarce.
Poland, with an economy largely based on agriculture, is an interesting case to investigate the cost-
effectiveness of using biochar in soybean production. We show that the use of biochar at rates of 40,
60 and 80 t/ha is unprofitable compared with a traditional soil amendment, such as NPK fertilization.
The breakeven price for biochar to be economically viable should be USD 39.22, USD 38.29 and USD
23.53 for 40, 60 and 80 Mg/ha biochar, respectively, while the cost of biochar used for this experiment
was USD 85.33. The payback period for doses of 40 and 60 Mg/ha was estimated to be three years.
With a carbon sequestration subsidy of USD 30 per ton of CO2, the use of biochar may be profitable
in the first year of soybean production. This is the first comprehensive economic analysis of the use
of biochar in soybean production in Poland and one of the few published worldwide.
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1. Introduction

Enriching soils with biochar, a carbon-rich product derived from the pyrolysis of
biomass residues [1], has been proposed as an alternative for enhancing the ecosystem
services provided by soils [2,3]. Numerous studies have shown that the use of biochar
improves soil conditions by increasing soil pH, macronutrient and organic matter contents,
water regulation and the stability of soil aggregates and may have a positive effect on
crop productivity [4–9]. Among soil amendments, biochar is distinguished by its ability
to rapidly increase soil carbon sequestration and, thus, by diminishing CO2 emissions,
contributing to the mitigation of climate change, and possibly may be used in the carbon
market [3,10]. It is expected that by 2030, the price of allowances under the European
Commission’s (EU’s) emissions trading system could rise to EUR 65/t of CO2 equivalent
(CO2eq) under the EU’s most ambitious scenario for greenhouse gases (GHG) reduction.
Among the estimated scenarios, the MIX-50 scenario would raise prices to EUR 36/t CO2eq
but would reduce GHG emissions by 51 percent due to increase in carbon prices and an
increase in energy and transport policy. MIX and MIX non-CO2 scenarios, both of which
would reduce GHG by around 55 percent, leading to an EU ETS price of EUR 44/t CO2eq
in 2030 [11]. In the absence of a fixed carbon credit market, the benefits resulting from the
increase in crop yield are the fundamental factors determining the economic profitability
of biochar application [1].

Economic assessment of the use of biochar in the agricultural sector is frequently
overlooked. Moreover, among studies that considered biochar economic viability, only a
few dozen conducted comprehensive cost–benefit analyses (CBA) or life cycle assessments
(LCA) of using biochar as a soil amendment, e.g., [2,7,12,13]; (Supplementary Material,
Table S1, Word file). This may be due to several factors. First, market prices for biochar are
not established, and the costs of its application are estimated based on the cost of the raw
material, production process, transport and application methods [14,15]. Second, there are
discrepancies between the observed short-term agricultural benefits and the expectations
of biochar as a sustainable soil improvement in the long term [2]. The properties and effi-
ciency of biochar differ depending on the initial soil condition [16,17], plant species [6,18],
climate [19], type of feedstock, pyrolysis temperature and biochar dose [16,20–23]. In
addition, there are inconsistencies in the results of yields from pot and field trials, and
often, only those from pot studies are considered [7,17]. Considering that the available data
from long-term field studies may be insufficient and that the application rates of biochar
are still not well defined to provide general recommendations for its use, the results of
short-term experiments may not seem financially encouraging to introduce biochar on a
commercial scale [15].

Soybean (Glycine max L.) is one of the most nutritionally and economically valuable
legumes in the world. It is widely used and contains high-quality protein and oil, essen-
tial for human health [24–26]. Symbiosis with nodule bacteria (Bradyrhizobium japonicum)
enables the fixation of atmospheric nitrogen and enrichment of the soil with this macronu-
trient [27]. Moreover, the cultivation of soybean enriches the soil with organic matter in
the form of crop residues rich in macro- and microelements, thus improving its physical
properties. In addition, soybean cultivation reduces the development of pests and cereal
diseases, it plays a key role in crop rotation, and positively influences higher yields of
subsequent crops, especially rapeseed and cereals [28,29]. Introducing legumes into the
crop rotation every four years causes a significant decrease in CO2 emissions [30].

Global soybean production has been increasing significantly over the last decades [31]
and is forecasted to continue increasing at least until 2030 [32]. Its global production
is approximately 176.6 million tons over 75.5 million hectares of arable land [28,33,34].
Increasing the soybean cultivation area in Europe, including for fodder purposes, is one of
the assumptions of the European Soy Declaration signed by 13 member states in Brussels
on 17 July 2017, during the meeting of the Council of Agriculture Ministers of the European
Union [35].



Agronomy 2021, 11, 2108 3 of 16

Understanding of the economic potential generated by the use of biochar in soybean
cultivation is still poorly evidenced. At the same time, if synergies are observed, biochar
could be an important ally in the European plans to increase soybean production. Com-
prehensive analysis is fundamental for the decision-making process on the adoption of
biochar at the national and international levels [2,36].

To this end, this study aims to: (i) evaluate the agronomic efficacy of biochar relative to
all the control and conventional synthetic fertilizer treatments; (ii) analyse economic benefits
from soybean yield increases versus the costs of biochar; (iii) evaluate the potential long-
term benefits of biochar stemming from carbon sequestration in soil. This is the first study
in Poland that performs a cost–benefit analysis of the use of biochar for soybean production
and one of the few worldwide. In addition, the conditions required to enhance the economic
feasibility of using biochar in soybean production and in climate change mitigation strategy
are discussed. The results presented here can support the decision-making process for
different stakeholders and for development of guidelines to the implementation of biochar
at a commercial scale.

2. Materials and Methods
2.1. Systematic Literature Review

A systematic literature review was conducted in the Web of Science database to
identify articles that performed a comprehensive CBA of biochar. The following script
was used: ‘biochar’ AND (‘cost–benefit*’ OR ‘life cycle assessment’). The search resulted
in 272 articles, yet most of the articles were not related to the subject. Adding ‘soybeans’
resulted in three articles (n = 3) that presented a CBA or life cycle assessment of biochar
using soybeans as a test crop or in mixed cropping. Publications on the effects of biochar
on soil ecosystem services (SES) in soybean farming were identified using the keywords:
‘biochar’ AND ‘soybean*’, without restriction to year (until February 2021). This research
returned 219 hits of which 69 were carried towards further analysis based on the title,
abstract and the methods (Supplementary Material Table S3, Excel file).

2.2. Agronomic Methods

The current research was based on the data from a field experiment located at the
experimental station of the Agricultural University of Kraków (50◦04′ N, 19◦51′ E). The ex-
periment was carried out over 2018 and 2019. The soils were Calcaric/Dolomitic Leptosols
(Ochric), according to the WRB soil classification [37], mostly composed of sand (56.7%),
silt (32%) and clay (10.4%) with a gravel fraction (0.9%). Chemical properties of the soil
are presented in Table 1. Two types of biochar were assessed: sunflower husk (BA) and
woodchips (BB), obtained during the batch pyrolysis at the temperature of 450–550 ◦C.
Experimental plots had dimensions of 1.2 × 1.2 m with three rates of biochar addition
(40 Mg/ha, 60 Mg/ha and 80 Mg/ha) plus control (with no soil amendments applied) with
four replicates for each treatment.

Biochar was applied manually to the plots to a depth of 20 cm with a hand-operated
rotary cultivator. The soybean (Glycine max L., the variety Elegance F1) was sown in
the second week of April 2019. Plantings (80 seeds per m2) were used. NPK mineral
fertilization was applied in the following doses: 30 kg N, 70 kg P2O5, 100 kg K2O. Before
sowing, the soybeans were inoculated with bacteria of the genus Bradryzobium japonicum.
The seed yield was determined based on the structure of the soybean yield and the degree
of pod pinching as a parameter of plant adaptation to habitat conditions. A detailed
description of the experiment, methodology, chemical composition of biochar used in the
experiment and data on soil properties can be found in Klimek-Kopyra (2021) [38] and
Kuboń et al. [39].
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Table 1. Chemical properties of the experimental soil. Adapted from Kuboń [39].

pH Chemical Nutrients

In H2O In KCl
N Total C org N min P K Mg Ca

(g·kg−1) (mg·kg−1)

6.73 6.28 0.116 1.33 32.1 99.4 81.9 42.01 836.9

2.3. Economic Analysis

The benefits (crop yield) from using biochar were compared to the control and fertilizer
use. The crop yields resulting from the three doses of both biochars were compared with
the average crop yield and its price in 2019 and 2020. Additionally, we adopted data from
organic soybean production and added this as a scenario to our analysis. The calculation
of profitability did not include the costs of weeding crops; the experimental field was
weeded manually. In addition, other agrotechnical costs related to cultivation, such as costs
related to tillage (for instance ploughing, harrowing or use of a cultivator, including fuel,
lubricants, depreciation of the tractor and machine, human labour) were not considered,
since they did not differ regardless of the treatment (Supplementary Materials Table S4,
Excel file).

Following data were used for economic analyses: the yield of soybean in tonnes (Mg)
being the average yield for four plots; doses of biochar derived from sunflower husks
(BA) and wooden chips (BB) applied at 40, 60 and 80 Mg/ha; price of biochars, which is
the same for both BA and BB (USD 85.33/Mg); costs of mineral fertilizers, that include
ammonium nitrate (USD 368.00/Mg), superphosphate (USD 394.67/Mg) and potassium
sulphate (USD 706.67/Mg); costs of lime (USD 80.00/Mg); price of soybeans in 2019 (USD
368.00/Mg); price of soybeans in 2020 (USD 342.00/Mg); price of organic soybeans in
2019 (USD 625.60/Mg); price of a ton of organic soybeans in 2020 (USD 581.40/Mg) and
soybean seed price USD 49.30/pack (USD 197.20/ha). We used calculations for lime as
another scenario. This is because most of the soils in Poland are acidic, and the use of
lime is one of the common agricultural practices in Poland. Data for subsidies in Poland
for the agricultural production of field crops of leguminous seeds, including for organic
production, were as follows: for single-area payment in 2019 (USD 125.77/ha) and in 2020
(USD 129.01/ha); payment for legumes (up to the first 75 ha) in 2019 (USD 204.21/ha) and
in 2020 (USD 193.20); subsidies for certified seed material in 2019 (USD 86.65) and in 2020
(USD 90.64) and greening subsidies in 2019 (USD 84.41) and in 2020 (USD 86.36).

In addition, an analysis of the optimal price (breakeven) for biochar use in soybean
production was performed. Breakeven price illustrates a situation in which sales incomes
cover fixed and variable costs. When calculating, the incomes from the sale of the crops
were compared with the costs of their production. In the search for the breakeven price,
these two indicators have been used over time. Breakeven is the value of the item or service
as expected by both the buyer and the seller. This is the point where the marginal revenue
(MR) equals the marginal cost (MC) (Equation (1)).

MR = MC, (1)

For the purposes of estimating the optimal price of biochar, the remaining costs of soy-
bean cultivation, as well as incomes, will be constant in value. Another alternative for this
analysis is a stochastic breakeven analysis, which addresses the sensitivity and uncertainty
of all factors. Thereof, the probability distribution defined in stochastic breakeven analysis
enables refined accuracy in obtaining various profit levels.

Demand and supply as well as price are elements of the agricultural product market.
The fluctuations of the power elements can be described as long, medium, short and
noticeably short. Short periods are up to one year, medium periods are several production
cycles, approximately 5 years on average, and long periods are 10 years or more [40].
Biochar is generally applied once every few years, since soil pH is regulated, and the soil
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physical–chemical parameters do not change significantly over several years [41]. In the
case of conventional fertilization, systematic liming and soil fertilization are prerequisites
for good plant yield. Liming is usually carried out once every four years, and fertilization
with macronutrients, depending on the crop, occurs 2–3 times during the cultivation
period [42]. Here, the payback period (PBP) was calculated as the ratio of the capital
invested to the estimated annual net cash flow covering the cost of the investment, assuming
that the next year will have flows equal to those in the previous year.

The cash flow for biochar use in soybean farming was calculated based on Equation (2).

PBP =
(

r(n−1)

)
+

Kt

CFt
. (2)

where:
PBP is payback period.(

r(n−1)

)
. is a year before the end of the repayment.

Kt. is uncovered cost at the beginning of the year in which the repayment takes place.
CFt. is a cash flow in the year of repayment.
t is for time.

2.4. Carbon Sequestration in Soil

Biochar has carbon sequestration potential and a long-term effect on soil organic
matter [43]. Here, the scenarios for the use of subsidies at the levels of USD 10, USD 20 and
USD 30 [44,45] are presented. The amount of fixed carbon in the biochar was 80% and 77%
for BA and BB, respectively. The assumed fraction of persistent carbon was 70% based on
the H:C ratio (0.03) and on Woolf et al. [46]. The sequestered carbon in soil (Cseq) was
calculated based on Equation (3):

Cseq = D × CB × PB, (3)

where:
D is the dose of biochar.
Cseq is for carbon sequestered in soil in biochar treatments.
CB is the proportion of fixed carbon in biochar (BA = 80% and BB = 77%).
PB is the fraction of persistent biochar (70% for both biochars, based on Woolf et al.) [46].

3. Results
3.1. Systematic Literature Review

Our literature review showed that papers that discuss comprehensive cost–benefit
analyses for biochar application in soybean production are scarce. Three studies were
retrieved: Dokoohaki et al. [1], Dumortier et al. [47] and Aller et al. [48] (Supplementary
Material Table S1, Word file). Moreover, the estimates from these studies were based on
modelling. The study of Dokoohaki et al. [1], based on previous meta-analyses, with the
use of a probabilistic graphical model shows that for the United States, the use of biochar
in corn areas is the most profitable in terms of income compared to soybeans and wheat
because the additional income raised by farmers is not sufficient to cover the cost of biochar
applications in many regions in the country. The results obtained by Dumortier et al. [47],
using the global model of agricultural prospects, indicate that biochar is most profitable
for use in farmland (soybean, corn and wheat were evaluated) in the Southeastern United
States due to the combination of high yield growth and availability of biomass to produce
biochar in this region. The cost–benefit analysis presented by Aller et al. [48] by applying
the Agricultural Production Systems Simulator (APSIM) biochar model includes soybean,
but only as part of corn–soybean rotation, not for soybean as a tested plant.

The results of the review regarding soil ecosystem services using biochar in soybean
production are presented in Figure 1. The most common soil ecosystem services that were
evaluated related to soybean and biochar were productivity (crop yields, n = 55), soil
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fertility (nutrient use efficiency, n = 37) and acidity regulation (n = 27), while the fewest
studies concerned greenhouse gas (GHG) emissions (n = 5), nutrient leaching (n = 3) and
carbon sequestration (n = 1). Most of the studies included multiple ecosystem service
assessments (Supplementary Material Table S3, Excel file).
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3.2. CBA

Regarding crop yields, the dose of 60 Mg/ha was the most effective use of biochar:
both for BA and BB types and in both years of use (Figure 2, Table 1). There was a statisti-
cally significant difference for this dose, and there was no statistically significant difference
between the doses 40 and 80 Mg/ha (Table 2). There were no significant differences on the
impact on the yields for both types of biochar. Other statistical analyses can be found in
Supplementary Materials, Figures S2–S4 (Word file).
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Figure 2. Efficiency of using biochar (in tonnes of soybean per hectare, Y axe) from sunflower husk (BA) and wood chips
(BB). Axe X indicates doses of biochar used in the experiment. Wilks Lambda = 0.67323, F (12, 606.17) = 8, 1485, p = 0.00000.

Table 2. Newman–Keuls test. Dependent variable: yield (tones of biochar per hectare). Homogeneous groups, alfa = 0.05000.
Error between groups = 1.14358, df = 232.00. Columns numbered 1, 2 and 3 represent homogeneous groups whilst starts
show homogeneous treatments for each group.

Type of Biochar Dose Yield (Average for Two Years) 1 2 3
Mg ha−1 t ha−1

Sunflower husk 0 2.232463 ****
Wood chips 0 2.326317 ****

Sunflower husk 40 3.249853 ****
Wood chips 40 3.387327 ****

Sunflower husk 80 3.468700 ****
Wood chips 80 3.939717 **** ****

Sunflower husk 60 4.242873 ****
Wood chips 60 4.284597 ****

Based on the comparison of revenues from the sales of crops and costs of soybean
cultivation using both types of biochar, our results show that the use of both biochars, is
unprofitable (Figure 3).

When estimating the use of biochar in organic soybean production, a scenario with
an additional cost of 70% [49] was adopted. Organic food production is usually more
expensive than conventionally grown food. This is due to the higher costs of production
standards, such as the price of raw materials, labour intensity or specific agricultural
practices [50,51], which results in higher prices for organic food [49]. Moreover, the organic
farming sector and the market for organic products in the European Union are subject to
specific regulations and provisions [52]. Figure 4 shows the income and costs that include
production subsidies and the increase in the price of seeds from organic farming, because
biochar could potentially be used in such systems [53]. For comparison, the income and
costs of growing soybeans using conventional fertilizer are also presented (Figure 5). The
results show that growing soybean using biochar in annual field trials is unprofitable. It
should also be noted that in the field experiment, conventional fertilizers were applied only
once, while in the case of legumes, it is recommended to fertilize twice: pre-sowing and
as a top dressing [42]. Table 3 summarizes the income, costs and results for two scenarios:
single and dual application of conventional fertilizers.
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Table 3. Comparison of the financial results for single and double soil fertilization with conven-
tional fertilizer.

Frequency of Conventional
Fertilization Financial Results (USD)

Income Costs Results

Once a year 1387.63 861.60 526.03
Twice a year 1387.63 1221.95 165.68
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Using conventional fertilizer in soybean production is profitable (Figure 5). Even
when applying double fertilization, as recommended, the income is positive. The solution
for the deficit of soybean production by using biochar is, for example, setting the optimal
price for biochar.

3.2.1. Breakeven Analysis

We found that optimal biochar prices are much lower than the current market price
(details can be found in Supplementary Material, Table S4, Excel file). The intersection of
the income and cost lines for the individual doses of sunflower husk biochar determines the
price at which cultivation becomes profitable (Figure 6). For a biochar dose of 40 Mg/ha,
the optimal price is USD 39.22; for a dose of 60 Mg/ha, the optimal price is USD 38.29; for
a dose of 80 Mg/ha, the optimal price is USD 23.53.
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3.2.2. Payback Analysis

We also estimated the costs and benefits of using biochar over a three-year period
(Figure 7). Detailed calculations including discount rate at 9% per year are included in the
Supplementary Materials.
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Figure 7. Comparison of the costs (in USD) of soil fertilization with conventional fertilizer and with
the addition of biochar over a three-year period.

In the third year of cultivation, at doses of 40 Mg/ha and 60 Mg/ha, the financial
result was positive. These doses are also more effective in terms of yield than a dose of
80 Mg/ha. Assuming that choosing a more expensive biochar compared to a conventional
soil amendment is an investment, it is possible to calculate its payback period (PBP), i.e., the
period during which the net investment income will cover the cost of the investment [54].
Noteworthy, soybean production is often intercropped with wheat, or the field can be left
fallow. For the modelling reasons, consecutive production was assumed, as the interpreta-
tion of the result is the time needed to return the invested capital. The shorter it is, the more
profitable it is to produce. The cash flow for the simulation will be equal to the financial
result (Table 4).

Table 4. Payback period for biochar doses of 40 Mg/ha and 60 Mg/ha calculated for the three-year period (t), at a discount rate of 9%
per year.

Biochar Dose Year
0 1 2 3

CF 40 Mg/ha −2010.09 −253.0832 1088.1315 998.2858
CFcum −2010.09 −2263.174 −1175.042 −176.756

CF 60 Mg/ha −2726.249 −455.7599 1492.2826 1369.067
CFcum −2726.249 −3182.009 −1689.726 −320.66

PBP for a biochar dose of 40 Mg/ha = 3+ 176.76
915.86 = 3.19 years.

PBP for a biochar dose of 60 Mg/ha = 3 + 320.66
1256.02 = 3.26 years.
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3.2.3. Carbon Sequestration

The cost–benefit results of carbon sequestration from biochar are presented in Table 5
and in Supplementary Materials, Figures S4–S6 (Word file).

Table 5. Cost–benefit scenarios of carbon sequestration for both biochars, BA and BB, at doses of 40 Mg/ha, 60 Mg/ha and
80 Mg/ha considering the following CO2 prices: USD 10, 20 and 30.

Carbon Price Biochar BA Dose Biochar BB Dose
USD tCO2−1 Mg ha−1

40 60 80 40 60 80

10 821 1232 1643 791 1186 1581
20 1643 2464 3285 1581 2372 3162
30 3696 3696 4928 2372 3557 4743

We found that soybean production with the addition of biochar (both types) at rates of
40 Mg/ha and 60 Mg/ha would be profitable after one year if the subsidy of USD 30 t/ha
from carbon sequestration was USD 30/ha (Supplementary Material Table S4, Excel file).
Lower subsidies are not profitable. In accordance with the international projections [44],
the carbon price would have to be in the range of USD 40 to USD 80 in 2020 and USD
50 to USD 100 in 2030 to achieve the goals of the Paris Agreement. When considering
a two-year period, with a one-time addition of biochar, including the remaining costs
occurring annually, production is profitable for all doses and amounts of subsidies for
carbon sequestration in the soil. This was true for all treatments except for a biochar dose
of 80 Mg/ha sunflower husk biochar.

4. Discussion

Soybean production may bring a range of environmental and economic benefits [28,29,54],
and its production is predicted to increase over the next decades [32]. The cultivation of
soybean can, therefore, play a significant role in the pursuit of more sustainable agriculture
in Europe. Combining soybean with biochar amendment can further magnify the environ-
mental, social and economic benefits of agricultural production. Biochar may improve soil
physical properties such as water regulation and respiration, porosity, texture, aggregate
stability and bulk density as well as soil chemical properties [55]. Furthermore, biochar
has considerable carbon sequestration potential and a long-term effect on soil organic
matter [43]. Moreover, the production of biochar may contribute to diminishing CO2
emissions, as the raw materials used to produce biochar would normally be landfilled
or combusted in a conventional manner, consequently increasing CO2 emissions to the
atmosphere [56]. However, the high costs of biochar application may limit its adoption for
carbon sequestration and other environmental and economic benefits on a large scale [1].
To leverage these costs, subsidies related to soil carbon sequestration may be a promising
strategy. Indeed, our results show that with the subsidies at the rate of USD 30 per tonne of
CO2, the production of soybeans may be profitable after the first year of cultivation.

Biochar can also be considered an important tool for promoting a circular bioecon-
omy [57,58]. Bioeconomy covers the exploration and exploitation of bioresources, for
example, organic waste from the agri-food industry, which involves the use of technology
to create new bio-based products that have economic value [59]. Biochar is a marketable
bioproduct that can be used in many sectors, including agriculture. Therefore, efficient use
of biochar can improve soil properties, increase crop yields and provide opportunities for
additional income, hence generating economic and agronomic benefits [60]. For biochar to
be considered in developing wider environmental applications within a circular bioecon-
omy, it is necessary to consider the economic impacts [58].

The price of biochar may significantly increase the cost of cultivation, especially at
high doses. In our study, such doses were adopted given that our pilot experiment also
showed the best improvements in ecosystem services other than food production, such as
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water retention. The potential solutions to reducing the disproportions in profitability of
biochar use in soybean production compared with other soil amendments could be using
lower doses (supposing they lead to an increase in productivity), reducing the purchase
costs of biochar, increasing the purchase price of organic soybeans or adopting subsidies.
Regarding the price of biochar, we show that the optimal biochar price for biochar to
be economically viable should be USD 39.22, USD 38.29 and USD 23.53 for 40, 60 and
80 Mg/ha biochar, respectively, and the payback period for doses of 40 and 60 Mg/ha was
approximately three years. The application of biochar should, therefore, be treated as a
medium to long-term investment, where the rate of return is increasing over time [4]. In
the medium term (3–4 years), the use of biochar is profitable and may be competitive with
other soil amendments, such as lime or conventional fertilizers, especially when biochar
is loaded with additional nutrients [61–64], as conventional amendments are commonly
applied several times a year, depending on the soil and crop type. It is also possible that
the price of biochar will diminish over time, given the search for alternative methods in
sustainable land management, the relative novelty of biochar in Poland and the scarcity
of research that goes beyond environmental analysis and includes comprehensive cost-
benefit analysis. For example, in case of agricultural production in an organic system, its
development is related to profitability and competitiveness compared to other agricultural
production systems.

We also observed in our experiment that on the plots with biochar, soybean grew
quicker as compared with control and in a compact canopy, which led to better shading
and consequently limited the growth of weeds. On industrial plantations, this could reduce
the need to use pesticides. The production of soybean involves the use of large amounts of
pesticides, which poses a direct risk to humans and the environment in soybean plantations.

Nevertheless, it should also be noted that the study has some limitations. The ex-
periment was performed on a relatively small scale and over a short term. We evaluated
impacts only on one crop. It should also be acknowledged that biochar produced from
different input material might give different results. Additionally, we suggest that the
future research on soybean could include a treatment wherein biochar is applied along
with fertilization to verify how much fertilizer doses could be reduced. The costs of biochar
may also vary if the commercial scale is taken into account.

Finally, the economic aspects relating to the use of biochar in soybean cultivation
should be considered in a broader social and political context. Farmers’ interest in using
biochar in agriculture increases along with farmers’ knowledge about benefits and costs of
using biochar [65]. This directly relates to effective communication about the benefits of
biochar, for instance, through wider social campaigns, field visits and local events [7,65].
The economic profitability of using biochar in soybean production may be achieved through
the system of subsidies for carbon sequestration as presented in this study. Such solutions,
however, depend on political decisions. In the case of countries belonging to the European
Union, they are related to the Common Agricultural Policy EU (CAP). One of its most im-
portant goals and challenges is to support environmentally sustainable agriculture, which
is to combine food production with the protection of nature and biodiversity. According
to the assumptions of the European Commission, CAP is to be one of the foundations of
the European Green Deal [66]. Therefore, effective and transparent communication about
opportunities and limitations regarding the use of biochar and possible subsidies may give
a real chance to shape pro-environmental attitudes in line with the values expressed in the
European Green Deal.

5. Conclusions

To recommend the use of biochar in agriculture, socioeconomic evaluation is pivotal.
Biochar use in soybean production is an interesting alternative in the context of a circular
economy and sustainable agriculture. To the best of our knowledge, our study presents
the first cost–benefit analysis in Europe based on the results from experimental trials,
exclusively for soybean production. Although the results of our study are promising, there



Agronomy 2021, 11, 2108 13 of 16

is a need to expand such types of analyses both in Poland and elsewhere. In particular,
biochar production may have serious environmental and socioeconomic impacts, including
accelerated large-scale expansion of intensive soybean cultivation in biodiversity hotspots,
such as the Brazilian Cerrado. Soybean production has been increasing globally. Helping
make this production more sustainable; ideally, with important benefits for a range of
ecosystem services, should be a priority for researchers and decision makers at the policy
level. Therein, landowners may be advised on the best solutions that will maximize
agricultural production whilst leaving the environment, especially soils, in the best quality
for future generations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/agronomy11112108/s1. 1. Supplementary Material Word file. The document contains
information about a field trial in which two types of biochar at different doses were used to produce
soybeans. Additionally, the Word document presents examples from the scientific literature that
discuss what conditions must be met for the use of biochar in commercial agriculture to be viable, as
well as examples of studies that provided a cost–benefit analysis of biochar (CBA). The results of the
statistical analysis of the effectiveness of biochar use are presented in graphical form in the further
part of the document. 2. Supplementary Material Table S3, Excel file. This file contains the result of a
comprehensive literature review (scientific papers published up to January 2021) on the impact of
biochar use on ecosystem services in soybean production (e.g., impacts on yield, soil fertility, carbon
sequestration, etc.). The purpose of this literature review was to identify a scientific gap in the use
of biochar in soybean production, especially regarding carbon sequestration. 3. Supplementary
Material Table S4, Excel file. This file contains comprehensive calculations for the economic analysis
(cost–benefit analysis) of the following: biochar yield (two types of biochar) in different doses (for 40,
60 and 80 Mg ha−1); comparison of revenues and costs of using conventional fertilizer with biochar
in soybean production; optimal price and payback period for the use of biochar and cost–benefit
analysis of carbon sequestration in soybean production.
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36. Vereš, J.; Koloničný, J.; Ochodek, T. Biochar status under international law and regulatory issues for the practical application.
Chem. Eng. Trans. 2014, 37, 799–804. [CrossRef]

37. USS Working Group WRB. World Reference Base for Soil Resources 2014. In International Soil Classification System for Naming
Soils and Creating Legends for Soil Maps; Food and Agriculture Organization of the United Nations: Rome, Italy, 2014; ISBN
978-925-108-369-7.
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